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SUMMARY 
A staggered spectral collocation method for the stability of cylindrical flows is developed. In this method the 
pressure is evaluated at different nodal points than the three velocity components. These modified nodal 
points do not include the two boundary nodes; therefore the need for the two artificial pressure boundary 
conditions employed by Khorrami et d. is eliminated. It is shown that the method produces very accurate 
results and has a better convergence rate than the spectral tau formulation. However, through extensive 
convergence tests it was found that elimination of the artificial pressure boundary conditions does not result 
in any significant change in the convergence behaviour of spectral collocation methods. 

KEY WORDS Spectral collocation Chebyshev polynomials Staggered grid Pressure boundary conditions 
Hydrodynamic stability Cylindrical flows 

1. INTRODUCTION 

Velocity and pressure can be evaluated at staggered grid locations to simplify pressure boundary 
condition requirements for a variety of incompressible fluid dynamic applications. Unstaggered 
methods can be programmed more easily, but they often require pressure boundary conditions 
which can only be generated by manipulation of the equations of motion, rather than by direct 
application of a physical requirement. Recently, Khorrami et al.' (hereinafter referred to as KMA) 
have used unstaggered spectral collocation (pseudospectral) methods in studying the stability of a 
range of viscous, swirling flows. They showed that suitable pressure boundary conditions could be 
developed by manipulating the conservation-of-momentum equations and that accurate eigen- 
values could be obtained in an efficient manner. However, they did not investigate staggered 
methods, and since the indirect pressure boundary conditions are at least unattractive, if not 
controversial, questions about the utility of staggered and unstaggered formulations remain. The 
purpose of this work is to present a consistent formulation of the governing equations required to 
implement staggered spectral collocation studies of the stability of viscous, swirling flows and 
examine the staggered implementation with respect to the previous unstaggered study of KMA. 

In the unstaggered method of KMA the flow variables were expanded in terms of a truncated 
Chebyshev series. The global eigenvalues of the discretized system were then obtained by a 
generalized complex QZ routine.' They showed that the resulting algorithm was robust and easy 
to implement while being efficient. The advantages of the spectral collocation method over similar 
(spectral tau and spectral Galerkin) schemes were twofold. First, it was easily extendable to 
compressible flows, since the coefficients of the flow variables are always evaluated in the physical 
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space. Secondly, the use of the collocation formulation greatly simplified the implementation of 
boundary conditions and any new basic flow or co-ordinate transformation. 

The set of governing equations obtained by KMA are of sixth order. Therefore the six boundary 
conditions derived for the three components of the velocity are sufficient for a well-posed 
boundary value problem. However, a straightforward discretization, as employed in their work, 
resulted in a system which required two 'artificial' pressure boundary conditions, even though a 
Poisson equation is not involved in the calculations. In KMA, Neumann conditions were 
prescribed on the pressure at the two boundaries. This pressure gradient condition is well known 
whenever the Navier-Stokes equations are solved in primitive variables and has been discussed by 
Orszag and Israeli3 and Gresho and SanL4 The prescribed conditions are obtained by taking the 
inner product of the vector momentum equation with the unit normal for the boundary. In 
cylindrical-polar co-ordinates this turns out to be the radial momentum equation in its original 
form, evaluated at the boundaries. KMA showed that this formulation was viable and produced 
eigenvalue accuracy which was comparable to other methods. 

Some controversy surrounds the indirect pressure boundary conditions, particularly as they 
apply to Poisson solvers. Strikwerda5 questioned the validity of these boundary conditions for 
finite difference methods. Most of the questions related to finite difference methods have been 
answered by Gresho and Sani4 and Roache.6 While a staggered Chebyshev spectral collocation 
method has been employed by others (e.g. Malik et aL7 and Montigny-Rannou and Morchoisne') 
for attacking Navier-Stokes equations and by Macaraeg et a1.' for solving the linear stability of 
high-speed shear layers, the boundary condition implications for hydrodynamic stability analyses 
and a direct comparison between staggered/unstaggered formulations have received little 
attention. 

Since numerical hydrodynamic stability calculations are very sensitive to both the types of 
boundary conditions and how they are implemented, the behaviour of staggered and non- 
staggered spectral methods is an important concern. Owing to the global nature of the spectral 
methods, convergence rates are very sensitive to boundary conditions. Hence it is important to 
remove any ambiguity associated with the indirect pressure boundary conditions and to 
determine whether a staggered approach improves convergence. 

In this study we have staggered the pressure grids and therefore eliminated the need for the two 
indirect pressure boundary conditions. The formulation is developed in detail in the upcoming 
sections. As mentioned by KMA, this results in a somewhat more involved procedure. The 
convergence rate and accuracy of the present analysis will then be compared with other spectral 
methods and the KMA study. For simplicity, the notation employed in KMA will be used here 
and the reader is referred to that paper for additional information. 

2. STABILITY PROBLEM 

Assuming three-dimensional perturbations of the type 

{u, u, w, p ]  = {iF(r), G(r), H(r), P(r)) e'("'+"e-~r), (1) 

the linearized form of the governing equations and the boundary conditions in cylindrical-polar 
co-ordinates (T, 0, z) are given by KMA and will not be presented here. However, for the present 
study there was a slight modification to the form of their boundary conditions applied at the 
centreline as explained below. 

In the case when the azimuthal wave number In1 = 1, two of the boundary conditions become 
linearly dependent. In KMA another relation was deduced by enforcing the continuity equation 
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on the centreline, resulting in 

2F'(O) + nG'(0) = 0. (2) 

However, from a careful examination of the radial and azimuthal momentum equations as r-0, 
it can be shown that this condition (equation (2)) is identical to the conditions 

or 
F'(0) = 0 

G(0) = 0. 

(3) 

(4) 

Therefore in the present study equation (3) is used as the appropriate boundary condition for 
In[= 1. 

3. CHEBYSHEV SPECTRAL COLLOCATION FOR STAGGERED GRID 

The unique properties of Chebyshev polynomials in developing hydrodynamic stability codes 
have been elaborated by Orszag" and Gottlieb and Orszag." Also, function expansions for 
Chebyshev spectral collocation and explicit set-up of the derivative matrices for Gauss-Lobatto 
points are given in detail by Gottlieb et ~ 1 . ' ~  Therefore in this study attention is focused on the 
development of the interpolant polynomial and derivative matrices for the staggered nodes. Here 
it suffices to mention that the collocation points based on Gauss-Lobatto quadrature, (where 
the velocity components and the three momentum equations are evaluated), are the extrema of the 
last retained Chebyshev polynomial (TN(<)) in the truncated series. These points are defined by 

t j=cos - , j = O ,  1,. . . ,  N ,  G) 
where the centreline and outer wall boundaries correspond to j = O  and N respectively. 
Furthermore, if i i j k  are the elements of the first-derivative matrix evaluated at the tj-nodes, then 
the second-derivative matrix can be constructed via 

- - -  
Bjk=Aj,,, Amk. (6) 

The pressure and the continuity equation are evaluated at the collocation points tj+ 1/2 which are 
the roots of TN(t) and are given by 

tj+112=c0s(T), (2 j  + 1)n j=o ,  1, .  . . , N - 1 .  (7) 

Note that this set of points does not include the two boundary points. Next, the pressure is 
represented with an interpolating polynomial of degree N - 1 (rather than N). Therefore we write 

N- 1 

j = O  
P(O= C hj(OP(tj+ 1/zL (8) 

where the interpolant hj(t) is given as 

It can easily be shown that 

where 6jk is the usual Kronecker delta. 
hj (<k  + 1/2) = sjk, 
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At this time, two sets of interpolating matrices are needed to interpolate from the staggered 
points to the grid points and vice versa. That is, 

j=O, 1,.  . ., N-1, 

and 

where the elements of the matrix M* are given as 

and that of M as 

(14) 
(- l)j+k(l -ti+ 1/2)1/2 M .  = , j=O, 1, .  . ., N, k = O ,  1, .  . ., N-1. 

N(tj-5k+1/2) Jk 

In order for M* to be a square matrix, an extra row ( j  = N) with zero elements is added. Similarly, 
in the case of M a column (k = N) is added which contains null elements. 

In the case of the derivatives there are two different ways to interpolate. In one method the 
explicit functions gj  (which represent the interpolating polynomial for the velocity components) 
and hj are first differentiated and then evaluated at the required points. Hence the derivative 
matrices can be constructed explicitly. An equally valid method is to employ equation (11). 
That is, if 

N 
= 1 A$Fk, j = O ,  1, .  . ., N-1, 

- then 
A$= M ~ ~ A , ~ .  

Here we have used a mix of the two methods. That is, if 

then we employ 

where the elements of E are given as 

A null column (k= N) is added to make E a square matrix. 
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Finally, if the scaling factor for transformation between the physical and computational domain 
is given as 

, j=o, 1,.  . ., N, 

then the first-derivative matrix A in the physical domain may be written as 

A j k = s j z j k  (20) 

Af=MJt,Amk, (21) 

with similar relationships holding in the case of the mid-cell points. 

are: 
Employing all of the relations developed above, the governing equations, in discretized form, 

continuity, 

r-momentum, 

&momentum, 

z-momentum, 

-iReSj- dW Fj+ c N BjkHk+(--Reuj) 2 5 AjkHk d t  1 k = o  1 - t j  k = O  

2(i Re n V j )  4n2 N 
Hj-iaRe Wj H, - iaRe MjkPk+ - a2Hj=0,  (25) 

k = O  

where Re is the Reynolds number as defined in KMA. The boundary conditions are: 

at t=  -1, 

F(-l)=G(-l)=H(-l)=O for all n; (26) 
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for n=O, F(1) = G(l) = O  
H‘(1)=0 

for n =  f 1, 
F (  1) f G( 1) = 0 
H(1)=0 
F’(1)=0 or G’(1)=0 

F(1) = G(l) = H(l) = 0 for In( > 1. 

4. NUMERICAL SCHEME 

The above equations are rearranged so that they can be represented in the generalized eigenvalue 
format as 

DX = oLX, (28) 

where D and L are coefficient matrices obtained from the appropriate discretized differential 
operator and o is the eigenvalue. Both D and L are square matrices with dimensions of 4N + 3. 
The procedure for obtaining the eigenvalues using the IMSL QZ routine is straightforward and is 
explained in detail by KMA. 

5. RESULTS 

The convergence and accuracy of the staggered Chebyshev spectral collocation method hassbeen 
tested for Poiseuille flow in a pipe. In this case numerous results have already been reported by 
others, which greatly simplifies the comparison task. 

The mean velocity for this problem is given by 

u=o, v= 0, W =  1 -r2. (29) 
The linear stability of Poiseuille flow in a pipe has been studied by Metcalfe and 0 r ~ z a g . I ~  Using a 
Chebyshev spectral tau method and eliminating pressure, they solved a coupled set of fourth-order 
and second-order equations and obtained accurate results. The convergence behaviour of the 
present method is compared to the Chebyshev tau formulation of Metcalfe and Orszagl3 and the 
non-staggered method of KMA in Table I. It is clear that Chebyshev collocation (in either form) 
has a much better convergence rate than the tau method. However, there is hardly any difference 
between the convergence rate of the two collocation formulations. 

The flow in a circular pipe has been simulated spectrally by Leonard and Wray.I4 Employing 
shifted Jacobi polynomials, they have expanded the velocity field in a set of divergence-free 
functions and hence eliminated the pressure from their governing equations. They tested the 
convergence of their method for the linearized case of pipe flow with n =  1, c1= 1 and Re=9600. 
Table11 shows a comparison of the convergence behaviour of the two collocation methods 
against the results of Leonard and Wray.14 The agreement is excellent and exponential 
convergence is obtained. Obviously no significant round-off errors exist for any of the methods. 
The slight differences between the two collocation techniques and the method of Leonard and 
Wray14 can be attributed to different machine precision, size of matrices, co-ordinate stretching, 
etc. 
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Table I. Convergence behaviour of the two least stable modes for Poiseuille 
flow in a pipe. N is the number of polynomials used to resolve each flow 

variable. Re = 10, o! = 1 and n = 1 

N w1 w2 

8 
12 
16 
20 

8 
12 
16 
20 

8 
12 
16 
20 

Metcalfe and Orszag13, Chebyshev tau formulation 

0501654048 -i1.392398524 0.780474345 - i2.745100739 
0.491070208 - i1.393534481 0763978453 - i2.807040555 
0.491063984 - i1.393490921 0762026865 - i2.807291233 
0.491064084 - i1.393490894 0.762024215 - i2.807286430 

Present calculations, staggered Chebyshev collocation 
0.491065536 - i 1.3934907 13 
0.491064085 - i1.393490894 
0.491064084 - i1.393490894 
0.491064084 - i1.393490894 

0.762034238 -i2.807291149 
0.762024225 - i2.807286425 
0.762024223 - i2.807286422 
0.762024223 - i2.807286422 

Non-staggered Chebyshev collocation 
0-491067022 - i1.393495866 
0.491064084 - i1.393490896 
0.491064084 - i1.393490894 
0.491064084 - i1.393490894 

0.762035973 - i2.807301022 
0.762024226 - i2.807286427 
0.762024223 - i2.807286422 
0.762024223 - i2.807286421 

Table 11. Convergence behaviour of the least stable 
mode for Poiseuille flow in a pipe. N is the number 
of polynomials used to resolve each flow variable. 

Re=9600, u= 1 and n= 1 

N w 

Leonard and Wray14 
22 095050 - i0023 13 
27 0.95048142 -i0.02317074 
32 0.9504813967 -i0.0231707958 
37 0.9504813967-iO.0231707958 

Present calculations, staggered Chebyshev collocation 
22 0.95048 -i0.02317 
27 0.95048137 -i002317075 
32 0.950481 3971 - i0.023 1707938 
35 0.95048 13964 - i0.023 1707958 
37 0.9504813968 -i0.0231707957 

KMA, non-staggered Chebyshev collocation 

22 095048 -i0.02317 
27 0.95048150 -i0.02317082 
32 0.950481 3938 - i0.023 1708010 
35 0.9504813970 - i0.0231707956 
37 0*9504813966-i0.0231707958 
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For the same number of polynomials, the calculated eigenvalue spectrum of both collocation 
formulations contained identical numbers of converged eigenvalues. Increasing N results in higher 
numbers of converged modes, but at all times the total number of physical eigenmodes remained 
the same for both methods and the agreement was excellent. As N approached 48, the leading 
eigenvalue had converged out to 11 or 12 decimal places (which is very close to machine precision). 
Further increases resulted in deterioration of the accuracy starting from the leading eigenvalue. 
Furthermore, in the case of the staggered formulation the employment of boundary condition (4) 
rather than (3) resulted in no significant differences. Also, it was found that in the non-staggered 
case, if boundary condition (3) rather than (2) is employed, the convergence behaviour of the two 
collocation versions become almost identical. 

Although not reported here, both collocation formulations have been compared for a variety of 
other flows, including the stability of a trailing line vortex, multiple-cell vortices and a rotating 
pipe. In each case identical results were obtained agreeing up to seven or eight significant digits. 
These comparisons and the above tables suggest that when Neumann pressure boundary 
conditions are employed correctly in hydrodynamic stability calculations (at least in the case of 
incompressible cylindrical flows), they do not affect the accuracy or the convergence rate of the 
spectral methods. It is noted further that the computational running time for the staggered code 
was consistently 10%-15% greater than for the non-staggered code. A simple test revealed that 
this increase was caused entirely by the set-up of extra interpolating matrices and not by the QZ 
eigenvalue solver, although for stability calculations, owing to the relatively small amount of 
computer time involved, this extra penalty has no practical significance. 

6. CONCLUSIONS 

A Chebyshev spectral collocation algorithm with staggered grid was developed to study the 
stability of swirling flows. The method is an extension of the technique employed by Khorrami et 
al.' The numerical stability problem has been formulated in primitive variable form, evaluating 
the velocity components at the grid points and staggering the pressure at the mid-grid points. The 
staggered pressure approach has eliminated the need for artificial pressure boundary conditions. 
Direct comparison with other formulations such as the tau method of Metcalfe and Orszag13 and 
the numerical simulation of Leonard and Wray14 has shown that the method is robust and 
produces accurate results. However, comparison with the non-staggered spectral method of 
Khorrami et al.' has shown that the use of the indirect or artificial pressure boundary conditions 
did not affect either the accuracy or the convergence rate of the two spectral methods. 
Furthermore, owing to the added complexity, the staggered code was found to be 10%-15% more 
expensive to run than the non-staggered version. 
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